Low-Dimensional Quantum Materials Group

Since the first extraction of graphene and the subsequent Nobel Prize for its fascinating two-dimensional (2D) properties, a wide variety of atomically thin materials has been discovered, which together cover almost every phenomenon in condensed matter physics such as magnetism, superconductivity, topological insulation and many more. In contrast to its 3D counterparts, these materials become strongly renormalized in the strict 2D limit, through a combination of quantum confinement and enhanced electronic interactions. As a result these fascinating compounds exhibit enhanced quantum effects and display exceptionally strong interactions with electro-magnetic fields. The low-dimensional quantum materials group uses innovative nano-fabrication techniques to create novel designer materials made by vertical stacking of various 2D materials such as graphene, hBN, MoS2, NbSe2 etc. The shear infinite number of combinations and stacking order allows to engineer exotic quantum systems with an unprecedented level of control and tune-ability. We study these complex electronic states with a combination of electrical, optical and thermal measurements, and employ these to provide new types of hybrid devices for quantum sensing applications.

Learn more

LATEST NEWS

PostDoc, PhD and Master positions available!